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ABSTRACT: Improved forecasts of atmospheric river (AR) events, which provide up to half the annual precipitation in

California, may reduce impacts to water supply, lives, and property.We evaluate quantitative precipitation forecasts (QPF)

from the High-Resolution Rapid Refresh model version 3 (HRRRv3) and version 4 (HRRRv4) for five AR events that

occurred in February–March 2019 and compare them to quantitative precipitation estimates (QPE) from Stage IV and

Mesonet products. Both HRRR versions forecast spatial patterns of precipitation reasonably well, but are drier than QPE

products in the Bay Area and wetter in the Sierra Nevada range. The HRRR dry bias in the Bay Area may be related to

biases in the model temperature profile, while integrated water vapor (IWV), wind speed, and wind direction compare

reasonably well. In the Sierra Nevada range, QPE and QPF agree well at temperatures above freezing. Below freezing, the

discrepancies are due in part to errors in the QPE products, which are known to underestimate frozen precipitation in

mountainous terrain. HRRR frozen QPF accuracy is difficult to quantify, but the model does have wind speed and wind

direction biases near the Sierra Nevada range. HRRRv4 is overall more accurate than HRRRv3, likely due to data as-

similation improvements, and possibly physics improvements. Applying a neighborhood maximum method impacted

performancemetrics, but did not alter general conclusions, suggesting closest gridbox evaluationsmay be adequate for these

types of events. Improvements to QPF in the Bay Area and QPE/QPF in the Sierra Nevada range would be particularly

useful to provide better understanding of AR events.

KEYWORDS: Atmosphere; Atmospheric river; Freezing precipitation; Forecast verification/skill; Forecasting; Numerical

weather prediction/forecasting; Probabilistic Quantitative Precipitation Forecasting (PQPF); Cloud resolving models;

Mesoscale models; Model evaluation/performance

1. Introduction

Atmospheric rivers (ARs) are narrow (300–500 km wide)

regions of strong water vapor transport with a meridional

component, primarily in the lowest 4 km of the atmosphere,

accounting for over 90% of the total poleward water vapor

transport at midlatitudes (Zhu and Newell 1998; Gimeno et al.

2014). ARs are a major source of precipitation for many coastal

land areas, including the west coast of North America (Ralph

et al. 2004; Konrad and Dettinger 2017; Dettinger 2013; Lavers

et al. 2016). Up to half of the annual precipitation in California

can come from a fewAR events each winter season (Guan et al.

2010;Dettinger 2011;Gershunov et al. 2019).AR events provide

valuable water to replenish reservoirs and reduce drought and

wildfire risks, but also cause reservoir stress, flooding, mudslides,

and loss of lives and property (Corringham et al. 2019).

The impacts from ARs can be better managed through

improved quantitative precipitation estimates (QPE) and

quantitative precipitation forecasts (QPF), which in turn may

improve lead time and accuracy of precipitation, streamflow,

and reservoir storage impacts. QPE products, which are

generally derived from measurements, quantify the accu-

mulated precipitation that has occurred, while QPF products,

which are generally derived frommodel forecasts, predict the

accumulated precipitation that will occur in the future.

However, both QPE and QPF products have errors and un-

certainties associated with them, particularly in regions with

complex terrain. Additionally, frozen precipitation presents

an additional challenge, which is not accurately measured by

many QPE products, if at all. An investigation of numerous

satellite, radar, and gauge-based hourly QPE products found

them to disagree by up to an order of magnitude in California

(Bytheway et al. 2020).

ARs are challenging to model accurately due to a complex

evolution of synoptic and mesoscale meteorological features

(Kingsmill et al. 2006; Ralph et al. 2010; Cannon et al. 2017,

2020) as well as limited availability of observations over the

Pacific Ocean for model assimilation. Numerous global mod-

eling studies have evaluated forecast skill of ARs along the

West Coast of the United States. DeFlorio et al. (2018) found

forecast skill from the European Centre for Medium-Range

Weather Forecasts (ECMWF) model to vary based on season

and atmosphere–ocean oscillations. Lavers et al. (2020) found

the ECMWFmodel to be too cold throughout the troposphere,

and too dry with winds and water vapor flux too weak in the

lower troposphere (below 900 hPa) compared to dropsonde

measurements over the PacificOcean. Stone et al. (2020) found

significantly improved forecasts when temperature and wind

data from dropsondes over the Pacific Ocean are assimilated in

the Navy Global Environmental (NAVGEM) Model.Corresponding author: Jason M. English, jason.english@noaa.gov
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High-resolution ‘‘convection-permitting’’ models may be

able to improve AR forecasts through improved representa-

tion of mesoscale meteorological features, terrain, and/or

planetary boundary layer processes. Gowan et al. (2018)

found several high-resolution models—the High-Resolution

Rapid Refresh (HRRR), the North American Model (NAM),

and the NCAR Ensemble—to be more accurate than coarser

operational models when comparing QPF to QPE products

over the western contiguous United States (CONUS) during

the cool season. Among high-resolution models, two inter-

comparison studies have found the HRRR to perform the best

(Gowan et al. 2018; Dougherty et al. 2021, manuscript sub-

mitted to Wea. Forecasting, hereafter DHN). Even so, several

studies have noted a HRRRQPF dry bias in the Bay Area and

along the Pacific Coast (Darby et al. 2019; DHN). Darby et al.

(2019) suggested that HRRR terrain resolution, representa-

tion of thermodynamics, or vertical distribution of moisture

may contribute to the QPF dry bias in the Bay Area, as lower

tropospheric wind speed and integrated water vapor (IWV)

(which can impact QPF) compared reasonably well between

3-h forecasts from the HRRRv3 and eight Atmospheric River

Observatories (AROs) in the region during the 2016/17 cool

season. Jeworrek et al. (2021) investigated the impacts of

changing physics, microphysics, and grid spacing specifica-

tions in theWeather Research and Forecasting (WRF)Model

(on which the HRRR is based) for a year of precipitation

forecasts in British Columbia and concluded that the choice

of cumulus and microphysics parameterizations had the

largest impact on precipitation forecasts.

Quantifying precipitation forecast skill is challenging.

Contingency tables are often utilized, where the forecast is

compared to the observation at every point in the verifica-

tion domain during a time period and categorized into hits,

misses, false alarms, and correct rejections (Jolliffe and

Stephenson 2011). However, slight offsets in the timing and

location of precipitation result in one hit and onemiss, which

is especially common when evaluating models with fine

horizontal grid spacing. Several approaches have been de-

veloped to address this ‘‘double penalty’’ problem, including

object-based methods (Davis et al. 2006) and neighborhood

methods (Ebert 2008). The fractions skill score (FSS)

(Roberts and Lean 2008) is a commonly used neighborhood

method that compares the forecast frequency to the ob-

served frequency of an event computed in the neighbor-

hood. The FSS is used operationally at the Met Office to

verify the high-resolution model forecasts (Mittermaier

et al. 2013). However, the FSS does not consider contin-

gency table information, and several methods have been

developed to incorporate both neighborhood and contin-

gency table information (Clark et al. 2010; Schwartz 2017;

Stein and Stoop 2019).

As part of the Advanced Quantitative Precipitation

Information (AQPI) project (Cifelli et al. 2018; Bytheway

et al. 2020), we aim to answer three primary questions in this

paper: 1) How well does the operational HRRRv3 forecast

precipitation of California AR events that occurred in

February and March 2019, and are there patterns of biases

common to the events? 2) How do precipitation forecasts

from the HRRRv3 compare to HRRRv4, and can any

known model changes explain QPF differences? 3) Can we

identify causes of discrepancies between the QPE and QPF

products?

To answer these questions, we note the following aspects of

our experimental design. Tominimize the risks ofmaking overly

broad conclusions based on case-dependent results, we include

five AR events in our analysis, and calculate confidence inter-

vals. To address the known uncertainties with QPE product

accuracy, we compare QPF to two different QPE products:

Stage IV (Lin andMitchell 2005; Nelson et al. 2016) and a subset

of gauges from the Meteorological Assimilation Data Ingest

System (MADIS), which we refer to as ‘‘Mesonet.’’ To address

the known limitations of comparing models of different

horizontal grid spacings to point gauges, we evaluate using

both the closest grid box and neighborhood precipitation

statistical methods. To help identify possible causes of model

QPF errors, we compare model output to measurements of

temperature, water vapor, and wind speed/direction at nu-

merous locations. Finally, we explore whether differences

between QPF and QPE are related to the occurrence of

frozen precipitation, which is a known challenge with QPE

products.

2. Data and methods

a. AR events studied

We study five AR events that occurred in February and

March 2019 (Table 1). This time period was chosen for the

following reasons: 1) all five AR events impacted the Bay

Area and mountainous regions of California; 2) HRRRv3

operational output is available, and the final version of

HRRRv4 code available for use; and 3) the events occurred

over a relatively short 5-week time period, making a

HRRRv4 retrospective run of that length feasible. All five

events share some commonmeteorological features typical of

AR events impacting California (Fig. 1). An extratropical

cyclone is present off the Pacific Coast of the northwest

CONUS with its associated warm conveyor belt. This warm

conveyor belt contains the AR (narrow filament of large

water vapor content), and a moist low-level jet in advance of

the extratropical cyclone cold-frontal boundary. This bound-

ary generally moves west to east during the event, inducing

stratiform, convectively generated, and orographically en-

hanced precipitation (Ralph et al. 2016; Kingsmill et al. 2006;

Cannon et al. 2020). A few of the AR events studied have

unique characteristics. The 2–4 February 2019 event has two

consecutive low pressure systems during the time period: the

first starts as a large trough on 1 February that evolves into a

cutoff low off the coast of California on 2 February, which then

weakens and is replaced by a surface low that forms off the

coast of British Columbia on 3 February, which strengthens

and moves into the region on 4 February. For the 25–27

February 2019 event, the surface low remains displaced slightly

farther north than in the other AR events, impacting only the

northern half of California. For the 2–4 March 2019 event, the

surface low (and corresponding cold front) is weaker than in

the other AR events.
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The duration of the AR events is approximately two to five

days each, based on accumulated precipitation in the AQPI

domain (Table 1). For this study, we average precipitation

across the 48-h time period in which most of the accumulated

precipitation occurred in the AQPI domain (Fig. 2) based on

visual inspection of radar reflectivity maps.

b. RAP/HRRR model

The RAP/HRRR is an hourly updated data assimilation

and numerical weather prediction system, run operationally

at NOAA/National Centers for Environmental Prediction

(NCEP) (Benjamin et al. 2016; Alexander et al. 2017). The

RAP encompasses a region significantly larger than North

America at 13-km horizontal grid spacing, while the HRRR

encompasses slightly more than the contiguous United

States at 3-km grid spacing (Fig. 2a). The RAP and HRRR

both have 51 vertical levels and are initialized every hour,

assimilating a variety of satellite- and surface-based datasets

(Benjamin et al. 2016). The RAP provides initial and lateral

boundary conditions for the HRRR, although in the latest

version (RAPv5/HRRRv4), the HRRR receives its initial

conditions through a 36-member HRRR ensemble analysis

system instead of the RAP. As with any typical operational

system, both the RAP and the HRRR undergo continuous

TABLE 1. Summary of AR events studied.

Event Period averaged 6-h Stage IV comparisons 6-h Mesonet comparisons 1-h Mesonet comparisons

2–4 Feb 2019 1200 UTC 2 Feb to

1200 UTC 4 Feb

6-h cadence: 9 valid

times total

6-h cadence: 9 valid

times total

3-h cadence: 18 valid

times total

13–15 Feb 2019 0600 UTC 13 Feb to

0600 UTC 15 Feb

6-h cadence: 9 valid

times total

6-h cadence: 9 valid

times total

3-h cadence: 18 valid

times total

25–27 Feb 2019 0600 UTC 25 Feb to

0600 UTC 27 Feb

6-h cadence: 9 valid

times total

6-h cadence: 9 valid

times total

3-h cadence: 18 valid

times total

2–3 Mar 2019 0600 UTC 2 Mar to

0600 UTC 4 Mar

6-h cadence: 9 valid

times total

6-h cadence: 9 valid

times total

3-h cadence: 18 valid

times total

5–6 Mar 2019 0600 UTC 5 Mar to

0000 UTC 7 Mar

6-h cadence: 7 valid

times total

6-h cadence: 7 valid

times total

3-h cadence: 14 valid

times total

FIG. 1. Conceptual representation of a typical atmospheric river over the northeastern Pacific Ocean. (a) Plan-view schematic of

concentrated IWV (IWV$ 2 cm; dark green) and associated rain-rate enhancement (RR$ 0.5mmh21; red) along a polar cold front. The

tropical IWV reservoir (0.3 cm; light green) is also shown. The bold line AA0 is a cross-section projection for (b). (b) Cross-

section schematic through an atmospheric river [along AA0 in (a)] highlighting the vertical structure of the alongfront isotachs (blue

contours; m s21), water vapor specific humidity (dotted green contours; g kg21), and horizontal alongfront moisture flux (red contours and

shading; 3105 kg s21). Schematic clouds and precipitation are also shown, as are the locations of the mean width scales of the 75%

cumulative fraction of perturbation IWV (widest), cloud liquid water (CLW), and RR (narrowest) across the 1500-km cross-

section baseline (bottom) (from Ralph et al. 2004).
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development with new versions introduced into operations

approximately every 2 years, which provides benefit via

improved forecasts over time, but also creates challenges with

model assessment, as model versions regularly change. The latest

version, RAPv5/HRRRv4, became operational on 2 December

2020.RAPv5/HRRRv4 includes many assimilation and physics

improvements over the previous version (RAPv4/HRRR3),

including planetary boundary layer (PBL) code updates, en-

hanced gravity wave drag, assimilation ofGOES-16 radiances, a

36-member HRRR 3-km ensemble for the DA, improved

hydrometeor assimilation, and some new observations and

data assimilation methods (Benjamin et al. 2016; Alexander

et al. 2017).

For each AR event, we evaluate output from the opera-

tional HRRR (HRRRv3) and the experimental HRRR

(HRRRv4) corresponding to the dates of the events. HRRRv3

output was downloaded from existing operational runs,

while HRRRv4 output was produced by running retro-

spective simulations at the NOAAGlobal Systems Laboratory

in 2019 (see approach in James and Benjamin 2017). For

this study we used frozen HRRRv4 code, which became

the operational RAP/HRRR system on 2 December 2020.

For these retrospective simulations, HRRRv4 was run

with 36-h forecasts twice a day at 0000 and 1200 UTC, 18-h

forecasts at 0300, 0600, 0900, 1500, 1800, and 2100 UTC,

and 3-h forecasts at the remaining hourly times. The num-

ber of forecasts utilized for each AR event is summarized

in Table 1.

c. Stage IV and Mesonet QPE products

We utilize twoQPE products for this work: NCEP Stage IV

(Lin and Mitchell 2005), and ‘‘Mesonet’’ (a gauge network

from NOAA’s MADIS program). The two QPE products

are not completely independent from one another, as some

gauges from Mesonet are utilized to produce the Stage IV

product.

Stage IV is a regional hourly/6-hourly multisensor (radar

plus gauges) product produced by the twelve River Forecast

Centers (RFCs), and mosaicked into a 4.7-km-grid national

product at NCEP. The 6-hourly Stage IV is reprocessed

based on new information for a time period of up to 7 days

after the valid time. Each RFC conducts somemanual quality

control, and retains authority over which specific datasets

contribute to its respective analysis. The California–Nevada

RFC (CNRFC), releases a 6-hourly product based solely on

gauges and climatology (i.e., without using radar-derived

precipitation estimates). CNRFC starts with the mountain

mapper (Schaake et al. 2004; Zhang et al. 2011), which is an

orography-adjusted gauge interpolation product based on

the Parameter-elevation Regressions on Independent Slopes

Model (PRISM) climatology (Daly et al. 2008). CNRFC

adjusts the mountain mapper grid with measurements from

600 to 800 trusted gauges, including county alert gauges,

out of 2000 total available in the CNRFC domain in 2019

(R. Hartmann 2020, personal communication). CNRFC also

uses a ‘‘1.2 snow correction factor’’ (i.e., gauge-reported ac-

cumulations are increased by 20% when the precipitation

type is determined to be snow) because of known persistent

undercatch by many gauges. More details on Stage-IV are

provided in Nelson et al. (2016). For our work, the Stage IV

grid is remapped to a 3-km grid using an equally weighted

mean of nearest-neighbor and budget interpolation methods

to directly compare to the HRRR.

The ‘‘Mesonet’’ data used is from three gauge networks

provided fromMADIS: Remote AutomatedWeather Stations

(RAWS) (https://www.nifc.gov/aboutNIFC/about_RAWS.html),

FIG. 2. (a) RAP/HRRR domain. (b) Evaluation domain and ARO station locations (stars).
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Hydrometeorological Automated Data System (HADS) (Kim

et al. 2009), and MesoWest (https://mesowest.utah.edu/). These

are all national surface networks and report liquid precipitation

though MADIS; snow and ice measurements were not used in

calculating the liquid precipitation totals (G. Pratt, MADIS Lead

for NOAA Research, 2021, personal communication). Both

HADS and MesoWest provide data from several subnetworks

throughMADIS.A complete listing of the networks included

in MADIS is available at https://madis.noaa.gov/mesonet_

providers.shtml. We do not include any Citizen Weather

Observer Program stations in the database. We utilize all

stations reporting data during the time period of each AR

event, requiring the 1-h accumulation to be between zero

and 76mm as a rough quality control check, which resulted

in 420–480 Mesonet gauges included in each event. For

closest grid box comparison, we create a 3-km grid and as-

sign each gauge value to the grid box that encompasses the

gauge location. If there is more than one gauge located in

the same grid box, the gauge with the larger precipitation

value is used. This was a rare occurrence, and collocated

gauges reported data in the same grid box in only 3% of the

Mesonet data.

d. Metrics

Since a primary goal of the AQPI project is to improve

short-term monitoring of precipitation, streamflow, and

coastal flooding in the San Francisco Bay Area, we compare

1 and 6-h accumulated precipitation (acc) from two QPE

products (Stage IV and Mesonet) to HRRR QPF at two

forecast lead times: 1 and 6 h. Due to the cadence of

HRRRv4 cycling, 1-h forecasts are available every hour,

while 6-h forecasts are available every 3 h. We compare

average precipitation bias (mm) as well as commonly used

contingency statistics at several thresholds including fre-

quency bias, probability of detection (POD), false alarm

ratio (FAR), critical success index (CSI; Gilbert 1884;

Donaldson et al. 1975), and equitable threat score (ETS;

Gilbert 1884; Schaefer 1990). We evaluate spatial com-

parisons as well as an areal average across our designated

AQPI domain (33.38–41.48N, 118.28–123.88W). Precipitation

is evaluated via both closest grid box and the neighborhood

maximum (NM) method (Schwartz 2017). The NM method

creates a neighborhood for both the forecast and the obser-

vation, and considers any precipitation that overlaps as a hit.

We choose the NMmethod for several reasons: 1) it can easily

be applied to both gridded and point (gauge) datasets; 2) it

incorporates both neighborhood and contingency table in-

formation, 3) it was found to be the most realistic of three

neighborhood methods evaluated (Schwartz 2017); and 4) we

wanted to explore its usefulness for QPF/QPE in mountain-

ous terrain.

To better understandmodel performance, we also compare

forecasts of temperature, wind speed/direction, and inte-

grated water vapor to meteorological terminal aviation rou-

tine weather report (METAR) (Turner et al. 2020) and ARO

measurements. A map of the domain over which we average

our fields as well as ARO station locations is provided

in Fig. 2b.

3. Results

a. Spatial patterns of precipitation

Mean 6-hourly QPF and QPE for each of the five AR events

are computed for the time periods during the 48-h period in

which most of the precipitation occurred (Table 1). Spatial

maps of mean 6-h Stage-IV QPE (Fig. 3) show some common

features: All AR events have more precipitation at higher el-

evations (particularly the coastal and Sierra Nevada moun-

tains), and less precipitation at lower elevations (particularly

the Central Valley). This well-known precipitation dichotomy

reflects the influence of orographic lifting and precipitation

enhancement in both the coastal mountains and the Sierra

Nevada range. Precipitation in the Bay Area varies for each

event, but is usually substantial [.10mm (6 h)21], especially in

the Santa Cruz mountains south of San Francisco Bay and the

coastal mountains north of San Francisco. Compared to the

other events, precipitation was relatively higher for the 13–

15 February 2019 and 25–27 February 2019 AR events, with

more precipitation in the northern half of the AQPI domain.

Bias maps of HRRRv3 and HRRRv4 show a reasonable visual

agreement with Stage IV spatial gradients of precipitation, but

often are wetter in the Sierra Nevada range and drier along the

Pacific Coast, particularly in the Bay Area. One exception is

the 2–4 March 2019 event, where HRRR did not have a clear

bias in the Sierra Nevada range, although total precipitation

was less for this event in general. This case highlights the var-

iation that individual events can have on model forecast

accuracy.

Spatial patterns of precipitation fromMesonet QPE (Fig. 4)

appear similar to that of Stage IV (Fig. 3), although the two

QPE products were not directly compared. BothHRRRv3 and

HRRRv4 compare reasonably well to Mesonet, but as with

Stage IV, generally are wetter in the Sierra Nevada range and

drier in the Bay Area. This inferred dry bias in the Bay Area

(assuming the QPE products are correct) is also noted in other

modeling studies (Darby et al. 2019; DHN).

Bias maps of HRRRv3 and HRRRv4 suggest small differ-

ences between the two model versions (Figs. 3 and 4).

HRRRv4 usually has smaller biases than HRRRv3 compared

toMesonet, as shown by the number of data points within each

bias range (see Fig. 4 legend). HRRRv4 has more data points

within 3mm of the gauge measurements than HRRRv3 for

four out of five AR events, and has the same number for the

remaining event, suggesting the newer version of the model

improves forecasts of AR events.When summing across all five

AR events, a larger percentage of HRRRv4 data points are

within 3mm of the gauge values than HRRRv3 (75% versus

72%, respectively). This improvement comes from both a re-

duction in the dry bias (four out of five events) and wet bias

(three out of five events).

b. Categorizing precipitation patterns and biases

To more clearly quantify patterns of precipitation averages

and biases, we average all five AR events across the AQPI

domain and calculate mean 6-h precipitation for three altitude

ranges: 0–4200m (entire domain), 0–1000m (mostly outside

the Sierra Nevada range), and 1000–4200m (mostly the Sierra
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FIG. 3. Average 6-h accumulation (mm) for Stage IV, HRRRv3 bias (6-h lead time), and HRRRv4

bias (6-h lead time), averaged across the peak 48-h time period of each event (Table 1). HRRR bias is

calculated as HRRR 2 Stage IV; blue–green colors are a model wet bias and brown colors are a

dry bias.
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FIG. 4. Average 6-h accumulation (mm) for (left) Mesonet, (center) HRRRv3 bias (6-h lead time), and

(right) HRRRv4 bias (6-h lead time), averaged across the peak 48-h time period of each event (Table 1).

HRRR bias is calculated as HRRR 2 Mesonet; blue colors are a model wet bias, and red colors are a

dry bias.
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Nevada range). Two sets of matching comparisons are con-

ducted: a comparison between Stage IV and HRRR (Fig. 5a),

and a comparison between Stage IV, Mesonet, and HRRR

(Fig. 5b). In both panels, bias is calculated with respect to Stage

IV. When considering only points and times with Mesonet

availability (Fig. 5b), Stage IV and HRRR precipitation are

roughly 20%–30% larger than when considering all grid points

in the domain (Fig. 5a). Recall that Stage IV is a continuous,

gridded product available across the entire AQPI domain,

while Mesonet consists of 420–480 individual gauge locations.

This suggests that locations with Mesonet gauges usually re-

ceive more precipitation than an average location within the

AQPI domain. Comparing Stage IV to Mesonet (averaging

QPE in grid boxes that are common to both products), the two

QPE products have excellent agreement at 0–1000m, but

Mesonet is significantly drier than Stage IV at 1000–4200m

(Fig. 5b). This difference is primarily attributed to the presence

of frozen precipitation at higher elevations, which is included

in the Stage IV product but not Mesonet. The influence of

frozen precipitation is discussed further in section 3c.

When averaging across all altitudes (0–4200m), average

accumulated precipitation for both HRRRv3 and HRRRv4

are in the range of Stage IV andMesonet QPE. However, both

HRRR versions are significantly drier than both Stage IV and

Mesonet at 0–1000m, and are wetter than Stage IV and

Mesonet at 1000–4200m. These opposing biases as a function

of altitude are discussed further in the following sections.

Categorical precipitation forecast performance is quantified

at 0.25-, 2.5-, and 10-mm thresholds (6-h accumulation) for

several metrics, including frequency bias and CSI. ETS was

also calculated, and while the values were smaller than CSI

(due to random hits included in the ETS calculation), trends

and conclusions were similar (not shown). We also calculate

standard error 95% confidence intervals via the statistical

bootstrapping technique of Hamill (1999) using 1000 permu-

tations, with replacement. Frequency bias is the ratio of fore-

cast and observation frequency counts; hence a ratio equal to

one represents a perfect forecast. Frequency bias for both

HRRR versions relative to Stage IV ranges from 0.89 to 0.96 at

all three thresholds over all three altitude ranges (Fig. 6), in-

dicating the HRRR precipitation frequency at each of the

thresholds is slightly lower than Stage IV. Compared to

Mesonet, frequency bias is also low over the 0–1000-m altitude

range for both HRRR versions, while frequency bias is high

over the 1000–4200-m altitude range. As noted above, the

discrepancy between the HRRR versions and Mesonet over

FIG. 5. Average 6-h accumulation (mm) for Stage IV, Mesonet, and HRRR (6-h lead times), averaged across the AQPI domain for all

five AR events, at three different altitude ranges. (a) Stage IV and HRRR matched comparisons (grid boxes common to Stage IV and

HRRR data included.) (b) Stage IV, Mesonet, and HRRRmatched comparisons (grid boxes common to Stage IV, Mesonet, and HRRR

data included.) Precipitation bias is relative to Stage IV, and error bars represent 95% confidence interval of the standard error of

the mean.
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the 1000–4200-m altitude range is likely due to the presence of

frozen precipitation which is not included in the Mesonet da-

tabase. HRRRv4 usually has a higher frequency of exceeding

each precipitation threshold than HRRRv3 (in 16 out of 18 of

the comparisons in Fig. 6); however, most of these differences

are not significant at the 95% confidence level. The one ex-

ception is with Mesonet over the 0–1000-m altitude range at

2.5-mm threshold, where HRRRv4 has significantly higher fre-

quency bias than HRRRv3, which translates to a forecast im-

provement since the HRRRv4 frequency bias is closer to one.

CSI for both HRRR versions is generally larger (better) at

lower thresholds than at higher thresholds compared to both

Stage IV and Mesonet (Fig. 7). This is a common occurrence,

as high-intensity/low-frequency events are typically more

challenging for models to forecast accurately. At the 0.25-

and 2.5-mm thresholds, CSI for both HRRR versions is larger

(better) over the 0–1000-m altitude range than 1000–4200m,

while at the 10-mm threshold, CSI for both HRRR versions is

larger (better) over the 1000–4200-m altitude range. CSI for

HRRRv4 is usually larger than HRRRv3 compared to both

Stage IV and Mesonet across all three altitude ranges, par-

ticularly at higher thresholds, suggesting the newer model

version improves precipitation forecasts. These improve-

ments are statistically significant at 95% confidence versus

Stage IV at all thresholds, and versus Mesonet at larger

thresholds (Fig. 7).

Sometimes higher CSI may arise from higher frequency bias,

producing seemingly improved forecast skill due to excessive

frequency of precipitation occurrence (Baldwin and Kain 2006).

In an effort to further explore the reasons for improved CSI for

HRRRv4 over HRRRv3, we expand our contingency table

evaluation and provide performance diagrams containing POD,

success rate, frequency bias, and CSI based on the work of

Roebber (2009) (Fig. 8). HRRRv4 has improved forecasts over

HRRRv3 for most metrics, with higher CSI, POD, and success

rate. As we discussed previously, HRRRv4 also consistently has

higher frequency bias than HRRRv3. This translates to a

HRRRv4 improvement over HRRRv3 when frequency bias is

less than one, and a degradation when frequency bias is greater

than one. Comparisons toMesonet over the 1000–4200-m range

are relative outliers to the other comparisons, which again we

attribute to the presence of frozen precipitation not included in

Mesonet.

c. Exploring the contributions of frozen precipitation
to QPE/QPF discrepancies

It is challenging to accurately assess HRRR QPF since

QPE products have known biases, particularly with frozen

precipitation and in mountainous terrain. As we mentioned

previously, the Mesonet gauges in our study do not measure

snowfall and cover only a small portion of the AQPI land

area. Stage IV has known biases as well. The CNRFC man-

ually adjusts Stage IV precipitation at high elevations due to

known challenges with frozen precipitation. Several studies

have explored QPE and QPF errors relevant to our work.

Smalley et al. (2014) compared Stage IV precipitation to

CloudSat and found the former often misses precipitation in

high terrain and at temperatures below freezing, with Stage

IV precipitation detection three times lower and accumula-

tion 10% lower thanCloudSat in the California–Nevada (CN)

region. Lundquist et al. (2019) concluded that QPE products

have so much error with high mountain precipitation that

model forecasts may be a more reliable estimate in these

regions than the QPE products themselves. These challenges

highlight the need to improve QPE products in mountainous

regions.

To help identify the contributions of frozen precipitation to

differences between QPE and QPF, we quantify 6-h accumu-

lated precipitation for three temperature regimes based on 2-m

temperature from HRRRv4 at each hourly analysis time:

FIG. 6. Frequency bias of 6-h accumulation (mm) for HRRR (6-h lead times) against Stage IV andMesonet, averaged across the AQPI

domain for all five AR events, at three different altitude ranges, and three thresholds: (a) 0.25, (b) 2.5, and (c) 10mm. Bar heights in the

bottom panels are the difference in frequency bias between HRRRv3 and HRRRv4, with error bars representing the 95% confidence

interval for these differences based on the bootstrapping technique (Hamill 1999).
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0–400K (i.e., all data), 273–400K, and 0–273K (Fig. 9a).

Again, these are matched comparisons, meaning that data are

averaged only when available for all four datasets; hence, all of

the datasets are averaged only in grid boxes where Mesonet

gauges are located and reporting data. While there is rea-

sonable agreement between the QPE and QPF products at

0–400 and 273–400 K, there is significant disagreement be-

low freezing. Mesonet 6-h precipitation is approximately

half that reported by Stage IV and both HRRR versions at

0–273 K. It is interesting that Mesonet reports significant

precipitation below 273 K, suggesting that some gauges are

still measuring some precipitation at subfreezing 2-m tem-

peratures. Additionally, as we note later, HRRRv4 has a

cold bias resulting in some error in the defined boundaries of

our temperature regime evaluation.

Comparisons between the four QPE/QPF products over

the 1000–4200-m altitude range at four different temperature

regimes provides further insight into the influence of freezing

and/or frozen precipitation (Fig. 9b). Note again that due to a

model cold bias, using HRRRv4 temperature to categorize

liquid/frozen precipitation may have some errors. For this

reason, we categorize QPE/QPF using two different tem-

perature limits: 273 and 276K. While there is significant dis-

agreement between the four products across the whole

temperature regime (0–400 K), it is mostly coming from

temperatures below 273 K. Agreement is improved at tem-

peratures 273–400 K, and further improved if we use a

slightly warmer range of 276–400 K. In the 276–400-K tem-

perature regime, the four products all compare very well

and are not significantly different at the 95% confidence

level. This result suggests the vast majority of the discrep-

ancies occur when frozen precipitation is present. When the

precipitation is liquid, HRRR compares very well to Stage

IV and Mesonet in this mountainous terrain. Since all five of

the AR events in this study were known to have snowfall in

the Sierra Nevada range, we conclude that errors in the QPE

products are a significant contribution to inferred HRRR

QPF biases. It is difficult to quantify whether Stage IV or

HRRR are more accurate in the 0–273-K temperature re-

gime, however.

The first half of the 13–15 February 2019 AR event was

relatively warm, with a few periods of abrupt rises in

mountain snow levels (Hatchet et al. 2020). To further ex-

plore whether the discrepancies between QPF/QPE prod-

ucts in the Sierra Nevada range are due to errors in QPE

products when it is snowing, we average QPF and QPE over

two periods: a warm period (0600 UTC 13 February–

1800 UTC 14 February), and a cool period (1800 UTC 14

February–0600 UTC 15 February) (not shown). All of the

Sierra Nevada range in Plumas County north of Lake

Tahoe (which is lower in elevation than most of the Sierra

Nevada range in California) remained above 273 K during

the first period, suggesting that most of the precipitation

fell as rain in these locations as well. Correspondingly,

HRRRv4 compared well to Stage IV and Mesonet in the

first period, while in the second period, which was mainly

snow, HRRRv4 was wetter. This again suggests that the

presence of snow is causing QPE and QPF discrepancies,

even over the same geographic region during the same

AR event.

Another approach to compare QPF to QPE products is to

separate model QPF into its liquid/frozen components, and

compare model liquid QPF to liquid QPE products and/or

model frozen QPF to snow QPE products. However, since

bothHRRRversions have a near-surface cold bias in the Sierra

Range, the model likely partitions too much snow and not

enough liquid, even if total QPF may be accurate.

d. Comparing other HRRR meteorological fields

to observations

To better understand possible causes of model precipitation

errors, we compare 6-h forecasts from HRRR meteorological

fields to nearbyMETAR sites andARO stations. Note that both

METAR and ARO data are assimilated by the HRRR, so good

agreement in their fields should be expected near analysis time,

but model errors will likely grow at longer lead times. Low-level

FIG. 7. As in Fig. 6, but for critical success index (CSI) instead of frequency bias.
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wind speed biases could represent errors in several meteorolog-

ical processes related to QPF, such as errors in frontogenesis or

the low-level jet ahead of the cold front of an extratropical cy-

clone, or errors with orographic forcing. Temperature biases

could impact precipitation amount and phase. Time series of 2-m

temperature and 10-m wind speed for each AR event compare

reasonably well between both HRRR versions and METARs

across California, but generally the model forecast temperatures

are too cold andwinds are too strong (Fig. 10).While bothmodel

versions forecast similar near-surface temperatures and wind

speeds, HRRRv4 is typically colder with stronger winds. Both

HRRR versions have a persistent wintertime diurnal tempera-

ture bias pattern in California which affects forecasts for all five

AR events, with the largest bias at about 0300 UTC each day

(21.08C cold bias), and the smallest bias at 1500 UTC each day

(20.28C cold bias) (not shown). Looking at the spatial distribu-

tion of biases for the 13–15 February 2019 AR event, most of the

cold biases are in the Central Valley (not shown), even though

HRRR QPF compared favorably to Stage IV and Mesonet

in that region (Figs. 3f and 4f). In the Bay Area, the HRRRv4

10-m wind speed bias varies with location, with model wind

speeds too strong at some places and too weak at others (not

shown). HRRRv4 has cold biases at a few locations in the Sierra

Nevada range, suggesting too muchmodel precipitation is falling

as snow rather than rain; however, this does not explain the total

(liquid plus frozen) precipitation wet bias over the region relative

to Stage IV.

In the Bay Area, HRRR profiles of average temperature

and winds compare fairly well to the ARO station at Bodega

Bay (Fig. 11). Both modeled and observed temperatures de-

crease with height (Fig. 11a), wind speeds increase with

height (Fig. 11b), and wind direction shifts from southerly to

southwesterly with height (Fig. 11c). The HRRR is a little too

warm at the surface and too cold aloft. The average lapse rate

FIG. 8. Performance diagrams of CSI, frequency bias, POD, and FAR for HRRRv3 (6-h lead times; blue colors)

and HRRRv4 (6-h lead times; red colors) compared to Stage IV (boxes) and Mesonet (circles) at three altitude

ranges, averaged across the AQPI domain for all five ARs. (a) Closest grid box; 2.5-mm threshold. (b) Closest grid

box; 10-mm threshold. (c) 40-km NM; 2.5-mm threshold. (d) 40-km NM; 10-mm threshold.
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itself does not explain the HRRRQPF dry bias in the region,

but the temperature profile may be an indication of advection

errors at different levels. HRRR wind speed and direction

also compare relatively well to the ARO station at Bodega

Bay (Figs. 11e,f). HRRRv3 and HRRRv4 mean wind speeds

are slightly stronger than observed from about 0.5- to 2-km

altitude. HRRRv3 mean wind direction compares well with

the ARO station at Bodega Bay, while HRRRv4 is a little too

southerly (clockwise). This HRRRv4 wind direction bias

could produce the QPF dry bias; however, HRRRv3 also

had a QPF dry bias even though wind direction compared

well. Also, when looking at individual AR events, the HRRR

wind speed and direction biases vary (not shown), despite a

consistent HRRR dry bias in the Bay Area for all five AR

events, suggesting wind biases are not the primary factor

causing QPF biases. However, differences are not significant

for individual events. Our comparisons of HRRR wind speed

and direction to ARO stations in the Bay Area generally

agree with other studies. Darby et al. (2019) found 3-h fore-

casts from the HRRRv3 wind speed to compare reasonably

well to eight ARO stations in the Bay Area. DHN also

found a small clockwise HRRR wind direction error, and

suggested that may be responsible for the HRRR QPF dry

bias in the Bay Area. Overall, we conclude that it is possible

that errors in HRRR temperature, wind speed, or wind di-

rection biases are indicative of possible model errors with

meteorological features resulting in the HRRR QPF dry bias

in the Bay Area, but these biases do not appear to play a

dominant role in the QPF bias, and further work is needed to

explore the QPF dry bias in the Bay Area.

Near the Sierra Nevada Range, HRRR profiles of average

temperature and winds compare fairly well to the ARO station

atOroville (Fig. 12). Bothmodeled and observed temperatures

decrease with height (Fig. 12a), wind speeds increase with

height (Fig. 12b), and wind direction shifts from southeasterly

to southwesterly with height (Fig. 12c). HRRR temperatures

near the surface and aloft are a little colder than observed at

theARO station inOroville (Fig. 12d). However, the lapse rate

is not significantly different than observed, and the cold biases

likely would impact precipitation phase more than total pre-

cipitation, which does not explain the total QPF wet bias in the

HRRR. Near the surface, HRRRv4’s cold bias is more pro-

nounced than HRRRv3. This cold bias of approximately 1.58C
could be contributing to some errors in the frozen precipitation

analysis discussed in section 3c, which is a reason why we

constrained the ‘‘liquid’’ temperature regime to 276–400K. At

Oroville, the HRRR wind speed is a little too strong in the

lowest 1 km of the atmosphere, and the HRRR wind direction

is too southerly by about 10–208 in the lowest 2.5 km of the

atmosphere (Figs. 12e,f), which may contribute to QPF errors

if the wind direction error is large enough to affect the mag-

nitude of orographic forcing for upward motion. Neiman et al.

(2013) concluded that heavy precipitation in the Sierra Nevada

range is attributed partly due to vapor fluxes impinging per-

pendicularly to the Sierras, based on data from ARO wind

profilers. However, for individual AR events the HRRR wind

FIG. 9. Average 6-h accumulation (mm) for Stage IV, Mesonet, and HRRR (6-h lead times), averaged across the AQPI domain for all

fiveAR events, at the temperature ranges noted: (a) 0–4200 and (b) 1000–4200m.Output is averaged across the time period of each event,

and normalized to the number of grid boxes available at each forecast output interval. Precipitation bias is relative to Stage IV, and error

bars represent 95% confidence interval of the standard error of the mean.
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FIG. 10. Time series of HRRRv3 and HRRRv4 (6-h lead times) of 2-m T bias and 10-m wind speed bias

compared to METAR observations for each AR event (average over AQPI domain).
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speed bias varies (not shown), even though QPF consistently is

wetter than QPE products in the Sierra Nevada range, sug-

gesting wind speed errors are not consistently contributing to

the QPF/QPE differences. Again, it is difficult to diagnose

results from individual events, however, as the differences are

not significant at the 95% confidence level.

In the Bay Area, IWV from 6-h forecasts from both

HRRRv3 and HRRRv4 are not significantly different than

measurements from ARO stations at Bodega Bay and Point

Sur (Fig. 13). This suggests that model IWV is not contributing

to QPF dry bias in the Bay Area. Darby et al. (2019) also

found a reasonable agreement between HRRR and IWV

measurements (as well as IWV flux) in the Bay Area. In and

near the Sierra Nevada range, both HRRRv3 and HRRRv4

compare well at one location (Old Mammoth), and IWV is

consistently smaller than observed at another (Kernville).

Therefore, IWV dry biases does not support any model QPF

wet biases in the Sierra Nevada range. However, it is possible

that errors in the vertical distribution of water vapor could

translate to QPF errors, even when IWV compares well.

e. Comparing HRRR 1–6-h forecast lead times

Comparing 1-h accumulation forecasts at different lead

times can help quantify accuracy of model forecasts at varying

lead times and provide some insight into the causes of model

QPF errors, especially when comparing the two HRRRmodel

versions—errors at 1-h lead times may indicate errors with

model data assimilation or model physics, whereas at longer

lead times, the contribution of data assimilation errors wanes

and model physics errors may be more likely. Our goals here

are to answer two questions: 1) Does the HRRR model gen-

erally have better performance at 1- or 6-h lead times? 2) If

there are differences between HRRRv3 and HRRRv4, are

they more pronounced at 1- or 6-h lead times? We compare to

Mesonet only, since Stage IV is only available for 6-h accu-

mulation intervals over the AQPI domain. Furthermore, we

compare only when HRRRv4 2-m T is between 276 and 400K,

since our Mesonet gauges do not reliably report freezing or

frozen precipitation. HRRR biases are larger at 1-h lead times

than 6-h over the 0–4200 and 0–1000-m altitude ranges, but

smaller at 1-h lead times over the 1000–4200-m altitude range

(Fig. 14a). However, CSI is consistently better at 1-h lead times

than 6-h over all three altitude ranges (Fig. 14b). These results

suggest that different model errors are present at 1- and 6-h

lead times, but it is unclear which lead time is more accurate

overall. HRRRv4 generally outperforms HRRRv3 at both

lead times based on CSI and accumulation bias (Fig. 14), sug-

gesting that model improvements in both data assimilation and

physics are likely contributing to forecast improvements. The

differences are more pronounced at 1-h lead times, suggesting

FIG. 11. Profiles of (a)–(c) average and (d)–(f) bias temperature, wind speed, and wind direction at Bodega Bay for the HRRR (6-h lead

times) and ARO station, averaged for all five ARs. Error bars represent standard error of the mean at 95% confidence.
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thatHRRRv4model improvements in data assimilation and/or

short time-scale precipitation microphysics may be contribut-

ing more to forecast improvements than longer scale physics

over HRRRv3, but more detailed experiments are needed

to confirm.

f. Evaluating neighborhood maximum precipitation

To investigate whether QPE and QPF differences may be

related to small errors in timing/location of precipitation, or

whether there are limitations comparing model grids to point

gauges, we compare HRRR QPF to Stage IV and Mesonet

QPE using the neighborhood max (NM) method in addition

to the closest grid box comparisons discussed previously. We

conducted preliminary evaluations of the 13–15 February

2019 AR event using neighborhood radii of 3, 10, and 40 km

(not shown). Spatial patterns of HRRRv4 QPF biases com-

pared to Mesonet QPE showed similarities regardless of the

radius chosen, with HRRRv4 dry biases in the Bay Area and

wet biases over the Sierra Range. We conduct a deeper in-

vestigation here with a neighborhood radius of 40 km, which

is a commonly used radius to study severe weather by the

National Weather Service. The HRRRv3 and HRRRv4 CSI

at the three thresholds are computed against Stage IV and

Mesonet via the 40-km NM method and averaged across all

five AR events (Fig. 15). For our analysis at different altitude

ranges, the altitude is constrained at each grid box, but QPF

from surrounding (neighborhood) grid boxes are not ex-

cluded based on the altitude in those grid boxes. Hence, some

grid boxes may be assigningQPF from neighboring grid boxes

that are outside of the designated altitude ranges. This only

occurs in locations where neighboring grid boxes are near the

1000-m altitude cutoff between altitude ranges, such as the

slopes of the windward and lee sides of the Sierra Range, and

the Coastal Range north of the Bay Area. CSI values for the

40-km NM are generally larger than those computed via

closest grid box (Fig. 7), which is to be expected since ex-

tending precipitation into a neighborhood allows slight errors

in timing/positioning of precipitation to still be considered

hits instead of misses. There is less HRRR CSI variation

from one event to another via 40-km NM than closest grid

box, particularly at higher thresholds, but both methods

lead to similar conclusions: 1) HRRRv4 tends to outper-

form HRRRv3 regardless of the method used; 2) HRRR

CSI is larger (better) over the 0–4200-m altitude range than

the 1000–4200-m range compared to both Stage IV and

Mesonet; and 3) HRRR CSI is larger (better) at lower

thresholds than higher thresholds. Performance diagrams

show some similarities and some differences between the

closest grid box and the 40-km NMmethod (Fig. 8): As with

closest grid box, HRRRv4 tends to outperform HRRRv3,

with higher POD, higher success rate, and higher CSI.

Additionally, HRRR performance is better versus Stage IV

FIG. 12. As in Fig. 11, but at Oroville instead of Bodega Bay.
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at low altitude and worse versus Mesonet at high altitude.

However, the 40-km NMmethod confines POD to a narrow

region of around 90%–95%, and frequency bias is more

consistently large. This makes it more difficult to identify

differences between altitude ranges and model versions.

Also, there is a bigger difference in CSI between the two

model versions when using the 40-km NM method instead

of the closest grid box. Therefore, we conclude that closest

grid box comparisons are likely adequate when studying

HRRR forecast performance of AR events versus Stage IV

and Mesonet. However, since this is a single assessment,

and the closest grid box and 40-km NM do show some dif-

ferences, more work should be conducted before conclud-

ing that closest grid box comparisons are always adequate

for evaluating AR events over the AQPI domain.

4. Discussion and conclusions

We investigated QPE and QPF for five AR events that oc-

curred in the AQPI domain within California/Nevada in

February and March 2019. We compared QPF from two ver-

sions of the HRRR model (HRRRv3 and HRRRv4) to two

QPE products (Stage IV and Mesonet), and compared other

HRRR meteorological fields to available measurements. Our

findings and recommendations for future work are as follows:

1) The five AR events studied had some spatial similarities in

accumulated precipitation: In all five events, accumulated

precipitation was generally highest in the Sierra Nevada

range, followed by the Bay Area and Pacific Coast, and

lowest in the Central Valley. Both QPE products (Stage IV

and Mesonet) had general agreement on spatial distribu-

tion, although Stage IV had higher precipitation than

Mesonet over the Sierra Nevada range, which is partly

attributed to the lack of frozen precipitation measured by

Mesonet.

2) The spatial distribution ofQPF fromHRRRv3 andHRRRv4

compared reasonably well to Stage IV and Mesonet, with

highest precipitation totals in the Sierra Nevada range, and

the lowest precipitation in the Central Valley. However, both

HRRRv3 and HRRRv4 were wetter than Stage IV and

Mesonet in the Sierra Nevada range for four out of five

events, and had a dry bias along the Pacific Coast, particularly

in the Bay Area, for all five events.

3) In the Sierra Nevada range, the QPF and QPE products

compared well at temperatures above freezing. Below

freezing, issues with representation of frozen precipitation

in QPE products preclude an accurate assessment of

HRRR forecast skill, since our Mesonet database includes

liquid precipitation only, and other studies have found

Stage IV to poorly estimate frozen precipitation in moun-

tainous terrain. HRRR QPF errors could be significant,

and may be due to lower tropospheric wind speed or wind

direction biases such as those identified at Oroville.

Unfortunately, due to a model cold bias, the HRRR likely

produced too much frozen precipitation and too little rain

in the Sierra Nevada range, making it difficult to diagnose

QPF versus QPE errors by removing frozen precipitation

from the HRRR, or by comparing HRRR snow accumu-

lation to snow stations. HRRR IWV mostly compared

well with ARO measurements, but was sometimes too

low, which contrasts with a general wet bias in this region.

More research is needed to distinguish QPF errors from

QPE errors in this region, and some ideas are presented in

the future work below.

4) In the Bay Area, HRRR IWV, wind speed, and wind

direction compared relatively well with ARO measure-

ments. The HRRR temperature profile showed a warm

bias near the surface and a cold bias above 500m,

suggesting some errors in model representation of mete-

orological features such as the low level jet or frontogen-

esis, which could explain some of the QPF dry bias in the

Bay Area. However, temperature and wind speed were

quite similar between HRRRv3 and HRRRv4, even

though HRRRv4 had reduced precipitation bias and im-

proved CSI/ETS, suggesting other model configuration

differences were responsible for the improved forecasts.

For a few AR events, HRRRv4 IWV compared better to

measurements than HRRRv3, possibly explaining the

improved CSI and reduced accumulation bias. Other work

finds a consistent QPF dry bias in HRRR and WRF-based

models in the Bay Area, and while it is possible that IWV,

low level temperature or wind speed biases are contrib-

uting to QPF biases, more work is needed to investigate

FIG. 13. IWV at ARO stations (black), HRRRv3 (6-h lead times)

(blue), andHRRRv4 (6-h lead times) (red) in the BayArea (Bodega

Bay and Point Sur) and the Sierra Nevada area (OldMammoth and

Kernville), averaged across all five AR events. Error bars represent

standard error of the mean at 95% confidence.
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the impacts specific model physics and microphysics pa-

rameters have on QPF biases in the Bay Area.

5) HRRRv4 usually outperformed HRRRv3 for the AR

events compared to both Stage IV and Mesonet using

several precipitation evaluation metrics (accumulated

precipitation bias, frequency bias, POD, success rate, CSI,

and ETS). QPF was improved at both 1- and 6-h lead times,

with larger improvements at 1-h lead times, suggesting

that mainly improvements in data assimilation, and also

possibly physics, are contributing to improved forecasts

FIG. 15. As in Fig. 7, but using the neighborhood maximum (NM) method (Schwartz 2017) instead of closest grid box.

FIG. 14. Average 1-h inferred liquid accumulation (mm) for Mesonet, HRRRv3, and HRRRv4 at two lead times (1 and 6 h), averaged

across the AQPI domain for all five AR events, at three different altitude ranges, using only grid boxes where HRRRv4 2-m T is between

276 and 400K, and data are present in all three datasets. (a) Average 1-h accumulation (mm) and bias. Bar heights in the bottom panel

represent precipitation bias relative to Mesonet, and error bars represent 95% confidence interval of the standard error of the mean.

(b) CSI at 0.25-mm threshold. Bar heights in the bottom panel are the difference in CSI between HRRRv3 and HRRRv4, with error bars

representing the 95% confidence interval for these differences based on the bootstrapping technique (Hamill 1999).
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from HRRRv4 compared to HRRRv3. Wind profile biases

were similar between HRRRv3 and HRRRv4, suggesting

that low level wind errors may be continuing to cause QPF

errors in both model versions, although it is difficult to

conclude here as QPF errors may arise from many model

parameter deficiencies.

6) While other studies have found advantages of applying

neighborhood or object-based methods to precipitation

forecast skill for convective storms, we found that evalu-

ating the closest grid box is likely adequate to compare

QPE and QPF for AR events. Conclusions were similar

when using the 40-kmNMmethod as when using the closest

grid box for comparing the HRRRv3 and HRRRv4 to the

Stage IV gridded product and to Mesonet point gauges.

However, there were some differences between the two

methods: The 40-km NM method confines POD to a nar-

rower region, frequency bias is more consistently large, and

the difference in CSI is larger between the two model ver-

sions. It is possible that the lack of radar usage in Stage IV

by the CNRFC reduces the usefulness of theNMmethod by

producing a smoother QPE field. More work should be

done with this and other neighborhood techniques to de-

termine their usefulness for AR events over mountainous

terrain.

Future work should further explore the causes of the QPF

dry bias in the Bay Area reported in this and other research.

HRRR representation of water vapor vertical profiles, near-

surface winds, and their relationship to meteorological fea-

tures such as fronts and the low-level jet, as well as deeper

investigation of other model physics and microphysics at

several forecast lead times could help understand and im-

prove model forecasts of AR events.

Future work should also focus on improving both QPF and

QPE of frozen precipitation (which primarily impacts the Sierra

Nevada range and the Pacific Coastal mountains). Comparisons

of model liquid QPF to rain gauge networks and model frozen

QPF to snow networks can provide further insights, particularly

when evaluating models with fairly accurate temperature pro-

files. Evaluations at different temperature thresholds could be

repeated with other approaches. More accurate temperature

measurements could be used to constrain temperature ranges,

such as measurements from theMesonet network. Temperature

profiles could be utilized instead of simply near-surface tem-

peratures to more confidently determine precipitation phase.

Comparisons to additional QPE products such as the MRMS

QPEproduct (Zhang et al. 2011;Wuet al. 2012; Zhang et al. 2016)

or the probabilistic QPE product (Bytheway et al. 2021, manu-

script submitted toWea. Forecasting) in addition to Stage IV and

Mesonet should also provide more useful information. Adding

reflectivity from two X-band radars (Cifelli et al. 2018) to the

reflectivity mosaic assimilated by the HRRR could also be useful.

A deeper look at model performance at varying lead times can

help understand contributions of model physics and assimilation

errors. Finally, evaluating higher model horizontal and ver-

tical resolution could determine whether limitations in lower

atmosphere or terrain representation are contributing to

model QPF errors.
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